Non-radiative decay of a dipole emitter close to a metallic nanoparticle: Importance of higher-order multipole contributions
نویسنده
چکیده
The contribution of higher-order multipoles to radiative and non-radiative decay of a single dipole emitter close to a spherical metallic nanoparticle is re-examined. Taking a Ag spherical nanoparticle (AgNP) with the radius of 5 nm as an example, a significant contribution (between 50% and 101% of the total value) of higher-order multipoles to non-radiative rates is found even at the emitter distance of 5 nm from the AgNP surface. On the other hand, the higher-order multipole contribution to radiative rates is negligible. Consequently, a dipole-dipole approximation can yield only an upper bound on the apparent quantum yield. In contrast, the non-radiative rates calculated with the quasistatic Gersten and Nitzan method are found to be in much better agreement with exact electrodynamic results. Finally, the size corrected metal dielectric function is shown to decrease the non-radiative rates near the dipolar surface plasmon resonance. PACS numbers: 33.50.-j, 33.50.Hv, 32.50.+d, 78.67.-n, 71.45.Gm, 73.22.Lp, 78.67.Bf ∗http://www.wave-scattering.com
منابع مشابه
Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes.
We study the modification of the decay rates of a single dipolar emitter positioned in the vicinity of metallic linear nanoantennas when higher-order plasmonic excitations are induced. We show that it is possible to effectively tune the enhancement or suppression of both the radiative and nonradiative decay processes by controlling the position and orientation of the dipole with respect to the ...
متن کاملPerturbations of Dipole Decay Dynamics Induced by Plasmonic Nano-antennas – A Study within the Discrete Dipole Approximation
We report a discrete dipole approximation approach to analyse the perturbations induced by silver nano-particles on the decay dynamics of a point-like emitter placed in their proximity. Due to the excitation of localized surface plasmons, metallic nano-particles behave like optical antennas and are able to convert localized fields into freepropagating optical radiation, and vice versa. Field lo...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملRole of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas
The radiation of an electric dipole emitter can be drastically enhanced if the emitter is placed in the nano-gap of a metallic dipole antenna. By assuming that only surface plasmon polaritons (SPPs) are excited on the antenna, we build up an intuitive pure-SPP model that is able to comprehensively predict the electromagnetic features of the antenna radiation, such as the total or radiative emis...
متن کاملInvestigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method
Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...
متن کامل